Update of the PWR Industry Plan to Address GSI-191

Tim Andreychek
Westinghouse Electric Company

Phone: (412)-374-6246

E-mail: andtreyts@westinghouse.com

July 1, 2003

Presentation Overview

Presentation Outline

- Fracture Mechanics Application
- Debris Generation
- Debris Transport
- Head Loss

Objective:

• Identify and justify the use of a size of a breach piping to be used to evaluate consequential debris generation

Approach:

- A Fracture Mechanics (FM) approach will be used as a basis to define a stable through-wall flaw that, in turn, will provide the basis for evaluating consequential debris generation for loop (hot leg, cold leg, and crossover leg) and surge line piping
- For all other piping break, a complete severing of the pipe will be assumed

Basis:

- Mechanistic evaluations of pipe flaws in primary system piping have been performed:
 - Assess if a postulated instantaneous through-wall flaw would become unstable and lead to an instantaneous complete pipe rupture
 - Evaluations used:
 - Realistic but conservative assumptions, and,
 - Worst case combination of plant loadings

- White Paper submitted to NRC
- Information being added
 - Additional applications
 - Operator responses
 - Licensing background
- Expected completion by July 30, 2003

Debris Generation

- Draft provided to NRC for review
- NRC comments provided
- Draft amended
- Amended draft provided for detailed review

Guidance:

- To determine the transportability of debris, the velocity of the liquid on the containment floor must be calculated
- Two methods of performing this calculation are presented
 - Hydraulic Network Modeling
 - CFD Modeling

Hydraulic Network Approach:

- Calculate bulk velocity of liquid moving across the containment floor
- This is done using standard hydraulic network modeling techniques:
 - Segregate the containment into discrete flowpaths
 - The flowpaths are connected by nodes
 - The sump represents a terminal or "sink" node
 - The break represents a supply or "source" node in the network
 - The source node may be moved to represent different break locations
 - Other supply or "source" nodes may be located in the network.

- Evaluate hydraulic characteristics of each flow path using reference manuals (such as I'delchek) and standard hydraulic practices
- Several options exist for solving the hydraulic network to calculate bulk fluid velocities.
 - Application of a nodal network code
 - Application of an engineering calculation software package, such as TkSolver®
 - Enter the equations into a spreadsheet and solve them iteratively
- Once the velocities in the network are solved for, an assessment of debris transport is made

CFD Approach:

- A detailed calculation of the flow patterns in the liquid pool on the containment floor may be calculated using a computational fluid dynamics (CFD) code
- The model is constructed using detailed containment geometry information
- This approach provides for detailed local fluid velocities throughout the model region

- Nodal Network Approach
 - Draft developed
 - Is provided for NRC review
- CFD Approach
 - Development of draft evaluation methodology initiated

Head Loss

- Methodology development initiated
 - Head Loss Equation Formula
 - Limits of Applicability
 - Submerged Screen
 - Partially Submerged Screen
 - Inputs to Head Loss Evaluation
 - Sump Screen Geometry
 - Thermal Hydraulic Conditions
 - Debris Accumulation
 - Debris Bed Morphology

Summary

- Fracture Mechanics:
 - Amended text with additional information scheduled for end of July
- Debris Generation Methodology
 - Amended draft provided for NRC comment
- Debris Transport Methodology
 - Draft of Hydraulic Network Approach provided
- Head Loss Methodology
 - Development initiated